Hamilton's Principle as Variational Inequality for Mechanical Systems with Impact

نویسندگان

  • Remco I. Leine
  • U. Aeberhard
  • Christoph Glocker
چکیده

The classical form of Hamilton’s principle holds for conservative systems with perfect bilateral constraints. Several attempts have been made in literature to generalise Hamilton’s principle for mechanical systems with perfect unilateral constraints involving impulsive motion. This has led to a number of different variants of Hamilton’s principle, some expressed as variational inequalities. Up to now, the connection between these different principles has been missing. The aim of this paper is to put these different principles of Hamilton in a unified framework by using the concept of weak and strong extrema. The difference between weak and strong variations of the motion is explained in detail. Each type of variation leads to a variant of the principle of Hamilton in the form of a variational inequality. The conclusion of the paper is that each type of variation leads to different necessary and sufficient conditions on the impact law. The principle of Hamilton with strong variations is valid for perfect unilateral constraints with a completely elastic impact law, whereas the weak form of Hamilton’s principle only requires perfect unilateral constraints and no condition on the energy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Integrators for Underactuated Mechanical Control Systems with Symmetries

Optimal control problems for underactuated mechanical systems can be seen as a higher-order variational problem subject to higher-order constraints (that is, when the Lagrangian function and the constraints depend on higher-order derivatives such as the acceleration, jerk or jounces). In this paper we discuss the variational formalism for the class of underactuated mechanical control systems wh...

متن کامل

Mechanical Integrators Derived froma Discrete Variational

Many numerical integrators for mechanical system simulation are created by using discrete algorithms to approximate the continuous equations of motion. In this paper, we present a procedure to construct time-stepping algorithms that approximate the ow of continuous ODE's for mechanical systems by discretizing Hamilton's principle rather than the equations of motion. The discrete equations share...

متن کامل

Mechanical Integrators Derived froma

Many numerical integrators for mechanical system simulation are created by using discrete algorithms to approximate the continuous equations of motion. In this paper, we present a procedure to construct time-stepping algorithms that approximate the ow of continuous ODE's for mechanical systems by discretizing Hamilton's principle rather than the equations of motion. The discrete equations share...

متن کامل

Lagrangian mechanics and variational integrators on two-spheres

Euler–Lagrange equations and variational integrators are developed for Lagrangian mechanical systems evolving on a product of two-spheres. The geometric structure of a product of two-spheres is carefully considered in order to obtain global equations of motion. Both continuous equations of motion and variational integrators completely avoid the singularities and complexities introduced by local...

متن کامل

On the Construction of Variational Integrators for Optimal Control of Nonholonomic Mechanical Systems

In this paper we derive variational integrators for optimal control problems of nonholonomic mechanical systems. We rewrite the system as a constrained second-order variational problem, that is, as a problem where the Lagrangian and constraints are defined in terms of the position, velocity and the acceleration of the system. Instead of discretizing directly the equations of motion, we discreti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009